

ZioLink
Communication Protocol Manual

Version 1.2 - 20 October 2023

Copyright © 2023 Avenir Photonics GmbH & Co. KG. All rights reserved.

All information in this manual are subject to change without notice. While all information is
believed to be reliable and accurate, Avenir Photonics does not assume any liability arising out of
errors or omissions in this manual or for direct or incidental damages in connection with the
products.

Avenir Photonics GmbH & Co. KG
Franz-Mayer-Str. 1
93053 Regensburg
Germany
Phone: +49 - 941 - 46 29 72 80
E-Mail: info@avenirphotonics.com
www.avenirphotonics.com

Contents

Introduction 3 ..

The ZioLink protocol 4 ...

Command Codes 4 ..

Data Types 5 ..

Return Codes 5 ...

The USB Interface 6 ...

Controlling Spectrometers 7 ..

Specific Command Indices 7 ...

Data Types, Structures and Enumerations 10 ...

Special Procedures 12..

2

Introduction

This manual describes the communication protocol ZioLink, which is used to control Aris
spectrometers from a host computer. The manual is part of the Avenir Software Development Kit
(SDK), which also contains sample code, tools and device drivers.
The ZioLink protocol was designed to be easy to understand yet powerful and flexible to be used
in many different setup. If you would like to control an Aris spectrometer from your own software,
you have the following options:
• If you are using Windows and the .NET framework, you can take the ZioLinkSpectrometer class

(as implemented in the SimpleSpectrometer sample code) together with the other classes in the
same folder and use it in your own code.

• You can also directly communicate with the device using this protocol. This should work on any
platform in any programming language.

If you are not using Windows and the .NET framework, the first step would be to find out how to
send and receive simple messages from and to a USB device. Once you’ve established the
communication to the device, sending commands and receiving replies should be simple and
straightforward to implement.
When reading this manual, we recommend you try out the protocol using the tool ProtocolDroid
included in the SDK. This should give you a good understanding of the basic concepts. Afterwards,
please check the demo codes BasicSpectrometer and SimpleSpectromter to see how to use the
procotol to control spectrometers.
For further questions, comments and requests, please do not hesitate to contact our technical
support.

3

The ZioLink protocol

The ZioLink protocol defines communication between a host computer and a device. It is half-
duplex with no out-of-band signalling. It does not determine the length of a single transmission or
the data integrity, because it assumes that the interface (like USB) has already that. The byte-order
is little-endian, as used by almost all computers today.
The ZioLink protocol is quite similar to the earlier NioLink protocol used to control other devices.
All communication is always intiated by the host sending a request message to the device
consisting of:

1. a 32-bit command code
2. additional data (payload) if required by the command code

The device then answers by sending a response message consisting of:
1. a 32-bit return code (zero for OK or an error code)
2. additional data (payload) if required by the command code

Command Codes
Each command code is of the form 0x0000XYZZ, where:

• X is the Command Type
• Y is the Command Action
• ZZ is the Command Index

Each request from the host can be either a command to the device or a request to send or receive
data. This corresponds to the Command Type X, which can be one of the following:

• 0 = Command (sometimes followed by a parameter)
• 1 = Parameter (a value than can can be read and written)
• 2 = Device property (a value that was set during manufacturing and can now only be read)
• 3 = Measured value (a read-only value that frequently changes)
• 4 = Bulk data (a larger data block than can be read and possibly written)

The Command Action Y then specifies what to do:
• 0 = Get (reads the value from the device or executes the command)
• 1 = Set (writes the value to the device)
• 2 = Minimum (returns the minimum value)
• 3 = Maximum (returns the maximum value)
• 4 = Default (returns the default value)
• 8 = Data type (returns the data type, see below)
• 9 = Name (returns the name of this value as a string)
• A = Unit (returns the unit of this value as a string)
• F = Length (returns the number of available indices for this command type)

Finally the Command Index ZZ specifies the individual command or value.

Examples

The command code 0x0000130A returns the maximum value for the parameter
AutoExposureTime:

• 1 = Parameter
• 3 = Maximum

4

• 0A = AutoExposureTime
The command code 0x00004103 writes User Data to the device:

• 4 = Bulk data
• 1 = Set
• 03 = UserData

Data Types
Parameters, Device Properties and Measured Values can be one of the following data types:

• 0 = Signed 32-bit integer
• 1 = Unsigned 32-bit integer
• 2 = Single-precision float
• 3 = 32-bit version number (0xAABBCCDD means version AA.BB.CC.DD)
• 4 = String (null-terminated ASCII encoded)
• 5 = Boolean
• 6 = Bit field

All data types except strings are 32-bit values. The data type of an individual value can be
retrieved with the Command Action 8 (= Data Type).

Return Codes
Each request from the host is answered by the device with a return code of the form 0x0000YYZZ:

• YY is zero for OK or an error code
• ZZ may contain a sub-code for the error specifying further details

The most common return codes are:
• 0x0000 = OK (operation was successfull)
• 0x0100 = Unknown command code
• 0x0200 = Invalid argument
• 0x0300 = Missing argument
• 0x0400 = Invalid operation (not possible due to current state of device)
• 0x0500 = Not supported (not available with this device)
• 0x0600 = Invalid passcode
• 0x0700 = Communication error
• 0x0800 = Internal error
• 0x0A00 = Cannot read internal memory

5

The USB Interface

When using the ZioLink protocol over a USB interface, each message corresponds to a single USB
transfer (consisting of one or more USB packets). Data is sent using the transfer type Bulk via the
default endpoints 0x81 (in) and 0x01 (out).
The USB Vendor ID for all devices by Avenir Photonics is 0x0x354F. Product IDs for spectrometers
by Avenir Photonics are of the form 0x01XX.
The Aris spectrometer communicates with „Full speed“ according to the USB 2.0 specifications.
In Windows we recommend you use the WinUSB device driver supplied by Microsoft. A
suitable .inf file for installing the driver is included in the SDK.
The spectrometer can also work as a WCID (“Windows Compatible ID”) device. This means that the
device provides additional information to Windows that (in theory) should eliminate the need for
an .inf file. However, we found that if driver installation is interrupted, the installation may remain
incomplete. For example, this may happen if the user attaches the device, but the removes it
quickly before the driver installation is finished. In this case, it may remain unfinished even if you
connect the device again. Then you would have to delete the corresponding entries in the
Windows Registry in order to recover. Therefore (unfortunately) we have to recommend that you
continue to use the “traditional” driver installation with .inf files.
In Unix-based systems (including Mac OS) you can communicate with the device over USB using
the libusb library, which is included in all major Unix systems. With libusb you don’t need a special
driver installation file. Just connect the device and address it using the Vendor and Product ID.
For all other platforms please see the documentation of the hardware interface layer in the
corresponding operating system.

6

Controlling Spectrometers

The following chapter describes the command codes to control a spectrometer. Don’t be
intimidated by the size of these lists. The Aris spectrometer has lots of features built into its
firmware and electronics, but the procedure for a regular measurement is rather simple.
The procedure for a simple spectrum measurement would be:
• Send a Reset command to the device (0x0000)
• Set the exposure time, averaging and auto exposure parameters as desired. These values are

generally stored persistently in the device, so you only need to set them if the conditions have
changes since the last measurement.

• Send a StartExposure command (0x0004, followed by the number of exposures)
• Read the device status (0x3000) until it becomes “Idle” again
• Read the spectrum with GetSpectrum (0x4000)
• When finished: send the StandBy command (0x0001) if you’d like to keep any changes of

parameters
To obtain the wavelengths for each spectrum value, please use the GetWavelengths command
(0x4001). Alternatively you can also read the wavelengths coefficients and calculate the
wavlengths with a 3rd order polynomial.
You generally don’t need to apply offset or linearity corrections to the measured spectra. This is
already done inside the device. Dark and reference spectra or a sensitivity calibration are also
applied within the device if enabled by the corresponding parameters.
Please see the BasicSpectrometer demo code for a actual implementation of this procedure. For
an example of a more sophisticated software please check the SimpleSpectrometer demo.

Specific Command Indices
These are the command indices for the Aris spectrometer. Combine them with a command type
and action (see previous chapter) to form a command code.
To find out more about the values listed below, please open the device connection in the
application software “Inspective” and choose “Device Settings” from the Device menu. This
displays a list of these values including data type, unit of measurement, and minimum, maximum
and default values.

Commands

 Cmd_Reset = 0x00,
 Cmd_StandBy = 0x01,
 Cmd_DeviceReset = 0x02,
 Cmd_ParameterReset = 0x03,
 Cmd_StartExposure = 0x04,
 Cmd_CancelExposure = 0x05,
 Cmd_RestoreFactoryDarkSpectrum = 0x06,
 Cmd_RestoreFactorySensitivityCal = 0x07,

Parameters Notes

 Param_ExposureTime = 0x00, in µs
 Param_Averaging = 0x01, number of single spectra to be averaged
 Param_AuxVoltageEnable = 0x02, supply voltage output on the aux connector

7

 Param_AuxConfiguration = 0x03,
 Param_TriggerInConfiguration = 0x04, (see description below)
 Param_TriggerInDelay = 0x05, in µs
 Param_TriggerInEnable = 0x06, for external triggering
 Param_BaudRate = 0x07, for the UART interface
 Param_TurnOffLEDs = 0x08, 1 = turns off indicator LEDs on device
 Param_AutoExposureEnable = 0x09,
 Param_AutoExposureTime = 0x0A,
 Param_TriggerOutConfiguration = 0x0B,
 Param_TriggerOutDelay = 0x0C,
 Param_SensorGain = 0x0D, 0 = low, 1 = high gain (if supported by sensor)
 Param_SubtractDark = 0x0E,
 Param_IntensityUnit = 0x0F, (see description below)
 Param_WavelengthUnit = 0x10, so far only 0 = “nm” supported
 Param_AnalogOutput = 0x11, sets the voltage level on the Analog Output pin
 Param_PrescanAfterTimeChange = 0x12,
 Param_SaveChangesPersistently = 0x13 (see description below)
 Param_DataFormat = 0x14 (see description below)

Device Properties

 DevProp_DeviceID = 0x00,
 DevProp_SerialNumber = 0x01,
 DevProp_Manufacturer = 0x02,
 DevProp_ModelName = 0x03,
 DevProp_HardwareVersion = 0x04,
 DevProp_SoftwareVersion = 0x05,
 DevProp_SaturationLevel = 0x06,
 DevProp_PixelCount = 0x07,
 DevProp_DataCount = 0x08,
 DevProp_FirstOffsetPixel = 0x09,
 DevProp_NumOffsetPixels = 0x0A,
 DevProp_FirstDarkPixel = 0x0B,
 DevProp_NumDarkPixels = 0x0C,
 DevProp_FirstSpectrumPixel = 0x0D,
 DevProp_PixelsPerBin = 0x0E,
 DevProp_MirrorSpectrum = 0x0F,
 DevProp_SensorType = 0x10,
 DevProp_OpticalConfiguration = 0x11,
 DevProp_ElectronicsType = 0x12,
 DevProp_CalibrDataNumSpectra = 0x13,
 DevProp_UserDataMaxSize = 0x14,
 DevProp_SamplingPoint = 0x15,
 DevProp_ReadoutSettings = 0x16,
 DevProp_ReadoutNoise = 0x17,
 DevProp_BadPixels0 = 0x18,

8

 DevProp_BadPixels1 = 0x19,
 DevProp_BadPixels2 = 0x1A,
 DevProp_BadPixels3 = 0x1B,
 DevProp_WavelengthCoeff0 = 0x1C,
 DevProp_WavelengthCoeff1 = 0x1D,
 DevProp_WavelengthCoeff2 = 0x1E,
 DevProp_WavelengthCoeff3 = 0x1F,
 DevProp_WavelengthTemp = 0x20,
 DevProp_WavelengthTempCoeff = 0x21,
 DevProp_OffsetLowGain = 0x22,
 DevProp_OffsetHighGain = 0x23,
 DevProp_OffsetLowGainTempCoeff = 0x24,
 DevProp_OffsetHighGainTempCoeff = 0x25,
 DevProp_OffsetTemp = 0x26,
 DevProp_NonlinNumCoeff = 0x27,
 DevProp_NonlinCoeff0 = 0x28,
 DevProp_NonlinCoeff1 = 0x29,
 DevProp_NonlinCoeff2 = 0x2A,
 DevProp_NonlinCoeff3 = 0x2B,
 DevProp_NonlinCoeff4 = 0x2C,
 DevProp_NonlinCoeff5 = 0x2D,
 DevProp_NonlinCoeff6 = 0x2E,
 DevProp_NonlinCoeff7 = 0x2F,
 DevProp_DarkTempCoeff0 = 0x30,
 DevProp_DarkTempCoeff1 = 0x31,
 DevProp_CommunicationProtocol = 0x32

Measured Values Notes

 MeasVal_Status = 0x00, (see description below)
 MeasVal_SensorTemperature = 0x01, internal device temperature in °C
 MeasVal_IOPortStatus = 0x02,
 MeasVal_SysTick = 0x03, elapsed ms since device was powered on
 MeasVal_RemainingExposures = 0x04,
 MeasVal_BufferCount = 0x05, current number of spectra in device buffer
 MeasVal_CpuTemperature = 0x06,
 MeasVal_BufferSize = 0x07, size of the device spectrum buffer
 MeasVal_SupplyVoltage = 0x08,
 MeasVal_AuxVoltageOK = 0x09,
 MeasVal_AnalogInput = 0x0A, reads the voltage on the Analog Input pin
 MeasVal_Time = 0x0B,
 MeasVal_Date = 0x0C,
 MeasVal_CalibrSpectraAvailable = 0x0D,
 MeasVal_SensitivityCalUnit = 0x0E,

Bulk Data

 BulkData_Spectrum = 0x00, (see description below)

9

 BulkData_Wavelengths = 0x01, the wavelengths for each pixel as float
 BulkData_CalibrationData = 0x02,
 BulkData_UserData = 0x03,
 BulkData_AuxInterface = 0x04,
 BulkData_DateTime = 0x05,
 BulkData_OffsetSpectrum = 0x06,
 BulkData_FactoryDark = 0x07,
 BulkData_FactorySensCal = 0x08,
 BulkData_DarkSpectrum = 0x09,
 BulkData_SensitivityCal = 0x0A,
 BulkData_RefSpectrum = 0x0B,
 BulkData_ReflecStandard = 0x0C

Data Types, Structures and Enumerations
Some of these values and command codes require special data structures that are described
below.

Status values

If you send a GetStatus request (0x3000) the device sends a 32-bit response value (after the
return code). Byte 0 of this response is one of the following values:
 StatVal_Idle = 0x00,
 StatVal_WaitingForTrigger = 0x01,
 StatVal_TakingSpectrum = 0x02,
 StatVal_PoweredOff = 0x08,
 StatVal_SleepMode = 0x09,
 StatVal_InterfaceNotConnected = 0x0A
Bytes 1 and 2 of the response value contain the number of available spectra that have been
measured, processed and are now ready to read them out from the internal buffer.

Spectrum

If you read a spectrum from the device with the GetSpectrum request (0x4000), the devices sends
a spectrum header followed by the actual spectrum values.
The spectrum header contains meta data about the spectrum as follows:

typedef struct
{
 unsigned int ExposureTime; //in µs
 unsigned int Averaging
 unsigned int Time; //elapsed 0.1 ms since midnight (refers to start of exposure)
 unsigned int Date; //elapsed days since 1 January 1970
 float LoadLevel; //0.0 = no signal, 1.0 = saturation level
 float SensorTemperature; //in °C
 uint16_t PixelCount;
 uint8_t DataFormat; //see description below
 uint8_t VersionNumber; //reserved for future use, now 0x00

10

 uint16_t ExposureSettings; //ReadoutSettings plus flags for auto exposure, gain and
 //buffer overflow
 uint16_t AppliedProcessing; //nibble 0: IntensityUnit, nibble 1: DarkSpectrum,
 //nibble 2: reserved, nibble 3: processing error flags
 char Name[32]; //up to 3 null-terminatedstrings:
 //Spectrum name, intensity unit, sample
} SpectrumHeader; //size: 64 bytes

The spectrum header is followed by the actual spectrum. By default this is an array of 32-bit
single-precision floating point numbers. The length of the spectrum is specified by the PixelCount
value, which you can obtain with the command code 0x2007 (Get Device Property: PixelCount) or
from the spectrum header (see above).
The spectrum data structure (consisting of spectrum header and float array) is also used when
transmitting calibration spectra from and to the device. These include the dark spectrum, the
reference spectrum and the sensitivity calibration.

TriggerInConfiguration

This 32-bit value is a byte-wise combination of the following settings:
• Byte 0: Trigger Mode

0 = Free-Running (trigger on end of exposure)
1 = Free-Running (trigger of start of exposure)
2 = Hardware Trigger

• Byte 1: External Trigger Edge
0 = Rising edge
1 = falling edge

• Byte 2 and 3: reserved for future use

IntensityUnit

This parameter selects the unit of the y-axis of the spectrum. It can be used to choose between
different measurement modes and corresponds to the “Intensity” box on the user interface of the
application software “Inspective”. It can have one of the following values:
 IntensityUnit_Counts = 0x0,
 IntensityUnit_CountsPerMs = 0x1,
 IntensityUnit_Transmittance = 0x2,
 IntensityUnit_Reflectance = 0x3,
 IntensityUnit_Absorbance = 0x4,
 IntensityUnit_Calibrated = 0x5,
 IntensityUnit_Evaluated = 0x6

DataFormat

By default all spectra are returned as 32-bit floating point numbers. To speed up data transfer,
shorter formats can be choosen:
 DataFormat_32bitFloat = 0, //32-bit float values (default)
 DataFormat_16bitInteger = 1, //offset and slope as two float values,
 //then spectrum values as 16-bit integer values
 DataFormat_16bitInteger2Binning = 2 //similar to DataFormat_16bitInteger, but odd and
 //even pixels are combined into one pixel
For an example of how these data formats are to be used, please see the FastReadout demo code.

11

SaveChangesPersistently

The device includes a flash memory to store all parameters persistently. This means that if you
change some parameters and then close the software and disconnect the device, all parameters
will be saved into flash memory. The next time you use the device, all parameters will be set to the
most recent values.
The parameters are only saved to the flash memory when you send the “Cmd_StandBy” or
“Cmd_Reset” command. Therefore the “Cmd_StandBy” command should always be sent by the
host software when the device connection or the software is closed.
If you do not want to save any parameter changes persistently in the device flash memory, set the
“SaveChangesPersistently” parameter to 0 (= false). Then whenever the device is powered on, the
parameters are always reset to the same values. This may be helpful if you need to ensure that the
device always starts up with the same parameter settings.

Special Procedures

External Triggering

Before using external triggering from your own software, please make yourself familiar with the
terminology and operation for triggering. You can find more information about this in the user
manual and try it out using the application software “Inspective”.
To configure external triggering from your own software:
1. Set the TriggerInConfiguration parameter (command code 0x1104) to the desired value for

trigger mode and trigger edge (see the description of these values abve). In most cases this
would be the value 0x0002 for “Hardware Trigger” and “Rising Edge”.

2. Set the TriggerInDelay(command code 0x1105) as desired. To start the exposure immediately
after the trigger event, set this parameter to 0.

3. Set the TriggerInEnable (command code 0x1106) to 1 (= true).
4. Start the exposure (as usual) by sending the StartExposure command (0x0004).
5. The spectrometer then waits for a trigger event to occur on the “Trigger In” pin before starting

the exposure.

12

	Introduction
	The ZioLink protocol
	Command Codes
	Data Types
	Return Codes

	The USB Interface
	Controlling Spectrometers
	Specific Command Indices
	Data Types, Structures and Enumerations
	Special Procedures

